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In crystallization or precipitation, the activation energy for nucleation of particles, En, 
for growth of particles, Eg, and for the total process, Ec, can all be determined indepen- 
dently by experiment. Formulae relating these three values are developed. Cases of 
linear and parabolic growth are included for different nucleation rates and morpholo- 
gies. The formulae are tested experimentally on amorphous alloys (metallic glasses) 
based on Fe-Ni. The agreement between the theory and the experiments is very 
satisfactory. 

1. Introduction 
There are many applications of nucleation and 
growth processes (e.g. crystallization, recrystaUiz- 
ation, precipitation from solid solutions etc.) 
which follow the well-known Avrami kinetics [ 1 ] 

x(t) = 1 - - e x p  -- ( l )  

where x( t )  is the time-dependent volume fraction 
transformed, t is time, z is the time constant and 
m is the Avrami exponent. ~- is related to the acti- 
vation energy of  the whole process, E*,  by 

provided Er is a constant within a certain tempera- 
ture range and the process follows an Arrhenius 
law. (R is the gas constant and T is temperature.) 

Some authors, however, prefer the following 
representation of Avrami kinetics 

x(t) = 1 -- exp (--Kt m) (3) 

where k is a constant. In this case, 

 ooxp(  ) 
The subscript " c "  refers to "combined  process" or "crystallization". 
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in which AH is called "the activation energy of 
transformation" (e.g. Henderson [2]). Obviously, 
this is not the same as Ec, although in both cases 
the validity of  an Arrhenius relationship for r and 

K is presupposed. Rather, E c and AH are con- 
nected by 

AH = m ' E c ,  (S) 

simply because in one case m is included in the 
time term and in the other case it is not. For rea- 
sons which become clear later, we prefer to call Ec 
"the activation energy of the whole process", and 
not AH. If the nucleation rate is constant, it can 
be expressed as 

h =  no exp ( -  E~--~) (6) 

where n is the number of nucleations with time, 
is the nucleation rate and En is the (apparent) acti- 
vation energy of nucleation. (The word "apparent" 
is intended to indicate that En itself is a sum of 
single contributions. Thus, in the case of  a 
diffusion-controlled nucleation process it is the 
sum of the activation energy of diffusion Ed plus 
the energy required to form a critical nucleus 
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AG e [3].) En can be determined from the slope of 
a plot of In n against 1/T. If the growth rate, u, is 
linear (as for interface-controlled growth, e.g. in 
ordinary recrystallization or pearlite growth), it 
c a n  be written as 

where Eg is the activation energy of growth and 
c a n  be determined from the slope of in u against 
lIT. On the other hand, if growth is controlled en- 
tirely by diffusion (volume-controlled), it normally 
follows a parabolic law. The particle radius, r, is by 

r = A (D" t) 1'2 (8) 

where A is a constant of the order of magnitude one 
and D is the diffusion coefficient. D is given by 

where Do is a constant and E a is the activation 
energy of diffusion, which is determined from the 
slope of In D against lIT. 

We shall now consider the relationship between 
E e and En, Eg and Ed. It is convenient to first con- 
sider four different cases with distinct control 
modes for nucleation and growth of particles. 

2. Case 1 : Linear growth, r = u �9 t, 
nucleation rate h = 0 

(I.e. only a fixed number N of quenched-in nuclei 
with no further nucleation of particles.) 

If particles are assumed to be spherical, the 
initial (total) volume, V, is V= N" 4/31rr 3, and 
therefore 

( 4  ) 
x(t) = 1 - - exp  ' 3 nNu3t3 (10) 

because for small V, x = V ~ 1 -- exp (-- V) is 
valid. For larger V (longer times) the Avrami ap- 
proach and Equation 1 is a good mathematical 
description of the experimentally observed s-shaped 
reaction curves. Comparison of Equation 10 with 
Equations 3 and 4, and substitution by Equation 8 
yields 

K = Ko exp -- 

43 7rNu3~ exp ( 3E,_I 
- - R- -T - I  " ( 1 1 )  

Hence, because the pre-exponential values are con- 
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stant, AH = 3 .Eg .  The Avrami exponent, m, in 
Equation 10 is obviously equal to 3. In the case of 
two-dimensionally growing particles, i.e. discs with 
fixed thickness, the same analysis could be applied 
with m = 2, and in the case of one-dimensional 
growth (needles), m = 1. Hence, 

AH = m.Eg (12) 

or, comparing Equation 12 with Equation 5 yields 
Eg = E e . 

3. Case 2: Linear growth, r = u �9 t, 
constant nucleation rate h > 0 

In this case the initial total volume can be ex- 
pressed as 

4 
V = =0 3-nu3t3hdt = 7ru3n3 "ta (13) 

for spherical particles. 

x( t )  = 1 - - e x p ( - - ; u S ; z t  4) 

and from Equations 3, 4, 6 and 7 

(lOa) 

K = Ko exp - -  

= - - ~ n o  exp -- u3o exp \ RT]'(14)  

Therefore 

AH = E n + 3Eg. (15) 

In this case the Avrami exponent, m, is equal to 4. 
For two-dimensional particles, similarly, A H =  
(E n + 2Eg) and m = 3. In general, AH can be 
written as 

~ H  = E~ + (m -- 1)Eg. (16) 

This case also includes the well-known primary re- 
crystallization of metals after cold working. 

4. Case 3: Parabolic growth, r = A (Dt) 1/2, 
nucleation rate h = 0 

V = 4/3 7rA3D 3/2 t3/2-N for spherical particles and 
A is a constant. Again, following a similar pro- 
cedure to the one for Cases 1 and 2, 

K = Ko exp -- 

(1. 4_3rrNA3D3o/2 exp \ RT ] '  



where m = 3/2 for spherical (three-dimensional) 
particles. Since N, A and Do are all considered to 
be constants, 

= ( 1 8 )  2 d. 

For two-dimensionally growing particles, m = 2/2 
and AH = Ed. In the general case 

A H  = mEal. (19) 

(In the case, from Equation 5, Er = Ed, which is 
clear because no new nucleation is involved and 
the whole reaction is entirely diffusion controlled.) 

5. Case 4: Parabolic growth, r = A (Dt) vz, 
constant nucleation rate h > 0 

ft t 4 rrA3D3/2t3/2dt V =  =o h 3 

= n 4nA3D3/2 t s /2"  2 (20) 
3 5 

for three-dimensional particles. As before, 

K = Koexp (--A~-~) 

-- 158AaTrn~ exp(- -~TT)D3~ -I'5EdtRT ] 

(21) 
and an Avranfi exponent of m = 5/2. Therefore, 

3 
AH = En + -~Ed (22) 

or, as above including the two other cases of  two- 
or one-dimensional particles, we obtain 

AH = En + (m -- 1)E d. (23) 

6. Discussion 
After having developed these four cases, we can 
generalize for all cases, It is convenient to desig- 
nate b, which is a morphology index, as 

b = 3 for three-dimensionally growing particles, 
b = 2 for two-dimensionally growing particles, 
b = 1 for one-dimensionally growing particles. 

Nucleation kinetics can be expressed by n ( t ) =  

n ' t  a, wi th  n '  a constant and 

a = 0 for nucleation rate zero, 
a = 1 for constant nucleation rate, 
a > 1 for increasing nucleation rate, 
0 < a < 1 for decreasing nucleation rate, 

Following the scheme developed above, we obtain 
for linear growth (from Equations 10 and 10a) 

K" t m = -- constant n"u b t . .  b, 

a + b = m. (24) 

For parabolic growth 

Kt  m = -- constant ;~" u b /2 �9 t " + b /2 , 

b 
a+-~  = m. (25) 

Now, combining Equations 5, 12, 16, 19 and 23 
with information on the values of  m for the four 
different cases discussed above and the defined 
meaning of a and b; the following general formulae 
can be written including all cases: 
For linear growth 

_ a E  n + bEg 
Ee 

a + b  

a + b  = m 

and for parabolic growth 

b 

Ee - 
b 

a + - -  

2 

(26) 

b 
a + ~ -  = m. (27) 

(In the latter case, as mentioned above, Ea = Eg.) 
Of course it follows that if, by chance with re- 

gard to tile special physical circumstances, E n is 
equal to Eg or Ed ,  then Ee = En  = Eg. This is ex- 
pected from such a formula, and that is the reason 
why we prefer to call E e "the activation of the 
total process" rather than AH, which is m ' E  e. 
If En 4= Ea, then the formulae give the desired E e 
as a "weighted mean value" o f E  n and Eg. 

6.1. App l i ca t ions  
Out of  the many cases in which En, Eg and Ee play 
a role and may be observed experimentally, we 
were interested in the crystallization of metallic 
glasses. In the following two commercially avail- 
able alloys we were able to determine the three 
E values independently: 

Fe4oNi4oP14B6 ("Metglas | 2826") [4, 5] 

and 

FeazNi36CrlaP12B6 ("Me@as | 2826A") [5, 6]. 
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T A B L E I Activation energies in amorphous alloys 

Activation Alloy 

energy 2826 A 
(kJ tool -1 ) 

2826 

E n 354 740 
Eg 252 345 
E e 270 [8] 440 
(experiment) 286 [7] 
E e 293 with a = 1 444 with a = 1 
(formula) and b = 3. and b = 3. 

Parabolic Linear 
growth growth 

Both are produced by Allied Chemical, USA. En 
and Eg were determined by quantitative trans- 
mission electron microscopy (TEM) (counting 
nuclei and measuring crystal sizes), Ec was deter- 
mined by  TEM volume fraction or by  differential 
thermal analysis [7, 8] .  Considering the fact that  
experimental  accuracy is l imited in the present 
cases to ~ 10%, the agreement between the experi- 
mentally obtained E e and those from the formulae 
is very good in bo th  examples. 

The Avrami exponent  rn which has been taken 
in the above analysis as a + b or a + (b]2) has also 
been similarly used in the literature, e .g .p .  542 in 
Christian [3].  However, we would like to draw 
at tention to the fact that  Ilschner [9] as early as 
1955 made a refined mathematical  t reatment  o f  
the relevant diffusion problem. His results for the 
Avrami exponents are different from just the sums 
o f  a and b. In the case of  three-dimensional par- 
ticles, parabolic growth and zero nucleation rate, 
his result is 1 < m < 1.2 (and not  1.5). Even more 
striking is the difference for the case of  constant 
nucleation rate: m = 1.7 (and not  2.5). Now, this 
lat ter  value of  1.7 is in excellent agreement with 
the value observed experimentally of  rn = 1.7 
[10].  Therefore, we believe that  this is strong 
evidence for Ilschner's theory  which obviously has 
somehow been overlooked in the literature of  this 
field. Although in view of  these facts the real 
Avrami exponent  can no longer be expected to be 

a + b or a + b/2,* we still think that  all the deri- 
vations used in this paper to obtain the final 
Equations 26 and 27 are at least a good approxi- 
mat ion.The reason is that  a and b appear in both  the 
numerator and the denominator.  The general under- 
lying analysis of  putt ing the different activation 
energies of  nucleation and growth into the Avrami 
kinetics is not  strongly influenced by the refined 
mathematical  treatments used by Ilschner [9]. 
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*This was also pointed out independently by Ham [ 11 ]. 
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